Thermochemical water splitting cycles
نویسندگان
چکیده
Two processes to effect splitting of the water molecule by means of an external heat source are competing for adoption, for the long-term production of hydrogen: high-temperature electrolysis, and splitting the water molecule through a succession of chemical reactions: a thermochemical cycle. Both processes form part of a strategy of voluntary reduction of greenhouse-gas emissions, and of alternatives to ever-scarcer fossil resources, and thus do not involve hydrocarbons.
منابع مشابه
Analysis of Solar Thermochemical Water-Splitting Cycles for Hydrogen Production
Approach • Review all published papers, reports, patents, etc. in the past 25+ years that relate to thermochemical water-splitting cycles, in general, and solar driven cycles, in particular. • Use FactSageTM program to perform chemical equilibrium calculations. • Employ HYSYS/ASPEN Plus chemical process simulation (CPS) program for developing process flowsheet, process analyses and optimization...
متن کاملEntropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting
The present study provides a thermodynamic analysis of solar thermochemical cycles for splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency. Based on thi...
متن کاملInitial Screening of Thermochemical Water-splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power
متن کامل
Solar thermochemical splitting of water to generate hydrogen.
Solar photochemical means of splitting water (artificial photosynthesis) to generate hydrogen is emerging as a viable process. The solar thermochemical route also promises to be an attractive means of achieving this objective. In this paper we present different types of thermochemical cycles that one can use for the purpose. These include the low-temperature multistep process as well as the hig...
متن کاملLow-temperature, manganese oxide-based, thermochemical water splitting cycle.
Thermochemical cycles that split water into stoichiometric amounts of hydrogen and oxygen below 1,000 °C, and do not involve toxic or corrosive intermediates, are highly desirable because they can convert heat into chemical energy in the form of hydrogen. We report a manganese-based thermochemical cycle with a highest operating temperature of 850 °C that is completely recyclable and does not in...
متن کامل